スラスト対策工設計システム Ver3.0

適用基準

○ 土地改良事業計画設計基準:設計「パイプライン」(R3/6)

出力例

管 種:農業用ダクタイル鋳鉄管 600 φ

対策工:水平&鉛直屈曲管・T字管・片落ち管・弁栓部

- ○入力データの印刷
- ○詳細計算書の印刷
- ○結果一覧表の印刷

開発 • 販売元

(株)SIP システム お問合せ先 : 大阪事務所 (技術サービス) 〒542-0081 大阪府大阪市中央区南船場 1-18-24-501

TEL: 06-6125-2232 FAX: 06-6125-2233

http://www.sipc.co.jp mail@sipc.co.jp

目 次

1	表題				2
2	使用管和	锺			2
3					
	3. 1	埋戻し	上土	£	2
	3. 2	設計な	k圧	E	2
				つ定数	
	3. 4	安全率	മ		2
4	検討断済	面			3
	4. 1	断面	1	(鉛直屈曲部)	3
	4. 2	断面	2	(鉛直屈曲部)	4
	4.3			(T字管)	
	4.4	断面	4	(片落ち部)	5
	4. 5	断面	5	(弁栓部)	6

1 表題

スラスト対策工設計計算例

2 使用管種

農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

管厚 7.5 (mm)

外径 630.8 (mm), 内径 615.8 (mm)

モルタルライニング なし

管体の単重
 モルタルの単重
 管体のヤング係数
 70.0 (kN/m²)
 21.0 (kN/m²)
 160.0×10° (kN/m²)

3 荷重条件

3.1 埋戻し土

 埋戻し土の単位体積重量
 w
 18.0 (kN/m³)

 埋戻し土の水中単位体積重量
 w'
 10.0 (kN/m³)

 内部摩擦角
 ф
 30.0 (°)

 水の単位体積重量
 w0。
 9.8 (kN/m³)

 管内水の単位体積重量
 y。
 23.0 (kN/m³)

3.2 設計水圧

設計水圧 H 0.300 (MPa)

3.3 その他の定数

管側面と土の摩擦係数 μ 0.50 土とコンクリートの摩擦係数 μ 0.50 曲面の受働土圧の補正係数 F 0.65 管の線膨張率 α 1.15×10 $^{-5}$

3.4 安全率

	スラスト力の検討 (裸 管)	構造物の設計
滑 動	1.50	1.50
浮 上	1.20	1. 20
沈下	1.20	1.00

4 検討断面

4.1 断面 1(鉛直屈曲部)

使用管種

農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

管厚 7.5 (mm)

外径 630.8 (mm), 内径 615.8 (mm)

上流側継手までの距離 L₁ 0.640 (m) L_2 0.640 (m) 下流側継手までの距離 曲がり中心半径 R 0.600 (m) θ_h ----- (°) 水平曲がり角度 β_{u} 0.0 (°) 管上流側と水平のなす角 $\beta_{\rm d}$ 45.0 (°) 管下流側と水平のなす角 地表面から屈曲点までの深さ H。 2.500 (m) 地下水位 H_{w} G. L. - 0.100 (m) V 0.800 (m/sec) 管内平均流速 $W_p = 0.95 \text{ (kN)}$ 管の重量 管内水重 $W_{w} = 3.71 \text{ (kN)}$ 管底面の地盤の許容支持力度 σ_{xv} 100.00 (kN/m²) 設計水圧が作用する断面積 外径 H 0.300 (MPa) 設計水圧

スラスト対策工: スラストブロック①

スラストブロックの寸法 (m)

$L_{\scriptscriptstyle 1}$	1.000	B ₁	1.500	H_1	1. 828
L_2	1.400	B_2	1.000	H_2	0.672
L_3	1.000	B_3		H_3	0.778
L_4					

管の重量 1.69 (kN) 管内水重 6.62 (kN)

滑動検討時のスラスト鉛直分力 考慮しない

4.2 断面 2(鉛直屈曲部)

使用管種

農業用ダクタイル鋳鉄管φ600(DB, K形)

管厚 7.5 (mm)

外径 630.8 (mm), 内径 615.8 (mm)

上流側継手までの距離 L_1 0.640 (m) 下流側継手までの距離 L_2 0.640 (m) 曲がり中心半径 $R = 0.600 \, (m)$ θ_b ----- (°) 水平曲がり角度 管上流側と水平のなす角 $\beta_{\rm u}$ 15.0 (°) 管下流側と水平のなす角 $\beta_{\rm d}$ 0.0 (°) 地表面から屈曲点までの深さ H. 2.300 (m) H_{w} G. L. - 1.000 (m) 地下水位 V 0.800 (m/sec) 管内平均流速 管の重量 $W_{p} = 0.97 \text{ (kN)}$ 管内水重 $W_{w} = 3.78 \text{ (kN)}$ 管底面の地盤の許容支持力度 σ₁₇ 100.00 (kN/m²) 外径 設計水圧が作用する断面積 H 0.200 (MPa) 設計水圧

4.3 断面 3 (T字管)

上流側使用管種

農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

管厚 7.5 (mm)

外径 630.8 (mm), 内径 615.8 (mm)

分岐管使用管種

農業用ダクタイル鋳鉄管 φ 400 (DB, K形)

管厚 5.5 (mm)

外径 425.6 (mm), 内径 414.6 (mm)

本管上流側継手までの距離 L₁ 0.700 (m) 本管下流側継手までの距離 L₂ 0.700 (m) 枝管継手までの距離 L₃ 0.700 (m) 地表面から管中心までの深さ H₆ 1.340 (m) 地下水位 H₇ G.L. - 1.000 (m) 設計水圧 H 0.300 (MPa)

スラスト対策工: 離脱防止継手による接合

安全率 S 1.50 単管 1 本の長さ L_p 6.000 (m)

4.4 断面 4 (片落ち部)

上流側使用管種

農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

管厚 7.5 (mm)

外径 630.8 (mm), 内径 615.8 (mm)

下流側使用管種

農業用ダクタイル鋳鉄管 φ 400 (DB, K形)

管厚 5.5 (mm)

外径 425.6 (mm), 内径 414.6 (mm)

地表面から管中心までの深さ H。 2.800 (m)

管の寸法 L₁ 1.200 (m)

 L_2 0.600 (m)

 L_3 0.400 (m)

地下水位 H_w G. L. - 1.000 (m)

管の重量 W_p 1.15 (kN)

管内水重 W_{*} 4.52 (kN)

管底面の地盤の許容支持力度 $\sigma_{rv}100.00$ (kN/m²)

設計水圧 H 0.200 (MPa)

スラスト対策工: スラストブロック①

スラストブロックの寸法 (m)

$L_{\scriptscriptstyle 1}$	0.000	B ₁	0.700	H ₁	2.000
L_2	2.000	B_2	0.700	H_2	0.800
L_3	0.000	B_3		H_3	0.800
L_4					

管の重量 1.12 (kN)

管内水重 4.47 (kN)

滑動検討時のスラスト鉛直分力 考慮しない

4.5 断面 5 (弁栓部)

使用管種

農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

管厚 7.5 (mm)

外径 630.8 (mm), 内径 615.8 (mm)

地表面から管中心までの深さ
 H。 4.000 (m)
 管体の軸方向許容圧縮応力度
 コンクリートの許容押抜きせん断応力度
 スティフナーの許容せん断応力度
 せん断力を受けるコンクリート厚
 スティフナー厚
 カ。 2.36 (N/mm²)
 し、45 (N/mm²)
 せん断力を受けるコンクリート厚
 カ。 20.0 (mm)
 スティフナー周長
 カ。 980.0 (mm)
 設計水圧
 H 0.200 (MPa)

スラスト対策工: 離脱防止継手による接合

安全率 S 1.50

目 次

1	断面	1	3
	1. 1	設計条件	3
	1. 2	設計断面	4
	1. 3	スラスト力の算出	4
	1. 4	鉛直曲がりに伴う滑動に対する検討	6
	1. 5	浮上に対する検討	7
	1.6	スラストブロックの計算	0
		1.6.1 形状寸法図	0
		1.6.2 スラスト力	0
		1.6.3 スラストブロック底面に加わる全荷重	9
		1.6.4 スラストブロック底面に加わる全荷重(沈下検討用)	10
		1.6.5 スラストブロックに働く浮力	
		1.6.6 鉛直曲がりによるスラストブロックの滑動	
		1.6.7 浮上に対する検討	
		1.6.8 沈下に対する検討	
	No.		
2	断面	2	
	2. 1	設計条件	
	2. 2	設計断面	
	2. 3	スラスト力の算出	
	2. 4	鉛直曲がりに伴う滑動に対する検討	
	2. 5	浮上に対する検討	
	2. 6	沈下に対する検討	20
3	断面	3	21
	3. 1	設計条件	21
	3. 2	設計断面	22
	3. 3	スラスト力の算出	22
	3. 4	滑動に対する検討	23
	3. 5	一体化長さの計算	24
		3.5.1 計算式	24
		3.5.2 一体化長さの算出	24
4	断面	4	25
4	ил ш 4. 1	型計条件	
	4. 2	設計断面	
	4. 3	スラスト力の算出	
	4. 4	滑動に対する検討	
	4. 5	スラストブロックの計算	
	4.0	4.5.1 形状寸法図	
		4.5.2 スラスト力	
		4.5.3 スラストブロック底面に加わる全荷重	
		4.5.3	
		4.5.5 スラストブロックに働く浮力4.5.5	
		4.5.6 スラストブロックの滑動に対する照査	ას

		4.5.7 浮上に対する検討	31
		4.5.8 沈下に対する検討	32
5	断面	5	33
	5. 1	設計条件	33
	5. 2	スラスト力の算出	33
	5. 3	管体応力の検討	34
	5. 4	スティフナー固定部の照査	34
	5. 5	スティフナー溶接部の検討	35
	5.6	一体化長さの計算	36

1 断面 1

1.1 設計条件

準拠指針: 土地改良事業計画設計基準及び運用・解説 設計「パイプライン」

令和3年6月 農林水産省農村振興局整備部設計課

(以後、基準書と略称する)

スラスト形式: 鉛直屈曲部

管 種: 農業用ダクタイル鋳鉄管φ600(DB, K形)

外径 D_s=630.8 (mm), 管厚 T=7.5 (mm)

計算管厚 t=T-2=7.5-2=5.5 (mm)

(基準書 p. 313, t+1<10mmm, φ700以下より)

計算內径 D=D_c-2t=630.8-2×5.5=619.8 (mm)

曲がり中心半径: 0.600 (m)

上流側継ぎ手までの管長: 0.640 (m)

下流側継ぎ手までの管長: 0.640 (m)

屈曲角度 水平屈曲角度: -----(°)

鉛直屈曲角度(上流側): 0.0 (°) 鉛直屈曲角度(下流側): 45.0 (°)

合成屈曲角度: 45.0 (°)

日风瓜四月及。 45.0 (

地表面から屈曲点までの深さ: 2.500 (m)

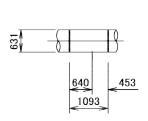
地下水位 G.L. - 0.100 (m)

設計水圧: H = 0.300 (MPa) = 300.00 (kN/m²)

管内平均流速: 0.800 (m/s)

土の内部摩擦角: 30.0 (°)

管底面地盤の許容支持力度: 100.0 (kN/m²)


単位体積重量 埋戻し土: 18.00 (kN/m³)

地下水: 9.80 (kN/m³)

管内水: 9.80 (kN/m³)

コンクリート: $23.00 (kN/m^3)$

1. 2 設計断面

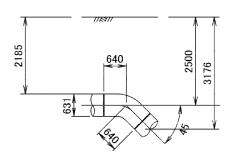


図-1.1 寸法図

1.3 スラストカの算出

スラスト力は式(1)により求める。(基準書 p. 415)

$$P' = 2 \cdot H \cdot a_{c} \cdot \sin \frac{\theta}{2} + \frac{2a \cdot w_{0} \cdot V^{2}}{g} \cdot \sin \frac{\theta}{2} \qquad \cdots \cdots (1)$$

ここで、 P': スラストカ (kN)

H: 設計水圧 300.0 (kN/m²)

a。: 設計水圧が作用する範囲の断面積

 $a_c = \pi / 4 \times 0.6308^2 = 0.3125 \text{ (m}^2\text{)}$

θ: 屈曲角度 (°)

a : 設計水圧が作用する断面積 $a = \pi / 4 \times 0.6198^2 = 0.3017 \text{ (m}^2\text{)}$

w。: 管内水の単位体積重量 9.80 (kN/m³) V : 管内平均流速 $0.800 \, (m/s)$ g: 重力の加速度 9.80 (m/s)

鉛直曲がりによるスラスト力

鉛直屈曲角度 $\theta = 45.0$ (°)

$$P' = 2 \times 300.0 \times 0.3125 \times \sin \frac{45.0}{2}$$

$$+\frac{2\times0.3017\times9.8\times0.800^{2}}{9.8}\times\sin\frac{45.0}{2}=71.90(kN)$$

スラスト力の水平分力

$$P_h = p' \cdot \sin(\theta/2 \pm \beta) = 71.90 \times \sin(\frac{45.0}{2} + 0.0) = 27.52 \text{ (kN)}$$

ただし、β: 上下流の管路のうち、水平に近いほうの管路が水平面となす角。 なお、上下流の管路が水平面の異なる側にあるとき正、 同じ側にあるときを負とする。

スラスト力の鉛直分力(上向き)

$$P_v = p' \cdot \cos\left(\frac{\theta}{2} \pm \beta\right) = 71.90 \times \cos\left(\frac{45.0}{2} + 0.0\right) = 66.43 \text{ (kN)}$$

鉛直曲がりに伴う滑動に対する検討

管の鉛直曲がりに伴う滑動は式(2)~(6)により検討する。(基準書 p. 417~419)

$$R_h \ge S \cdot P_h$$
(2)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots (3)$$

(地下水位が管頂より高い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w' \left(H_{2}^{2} - H_{1}^{2}\right) + 2\left(w - w'\right) H_{w} \left(H_{2} - H_{1}\right) \right\}$$
(4)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w \left(H_{2}^{2} - H_{1}^{2} \right) - \left(w - w' \right) \left(H_{2} - H_{w} \right)^{2} \right\}$$
(5)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots \qquad (6)$$

ここで、R₄: 水平方向抵抗力(管背面の受働土圧) (kN)

P.: スラストカの水平分力 27.52 (kN)

S: 安全率 1.50

F: 曲面の受働土圧の補正係数 0.65

18.00 (kN/m^3) w: 土の単位体積重量

w': 土の水中単位体積重量 10.00 (kN/m³) B_b: 管背面の幅 B_b=D_c 0.6308 (m)

H.: 地表面から管頂面までの深さ 2.185 (m)

H₂: 地表面から管底面までの深さ 3.176 (m)

H_{*}: 地下水面までの深さ 0.100 (m)

K: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_{P} = \tan^{2} \left(45 + \frac{30.00}{2} \right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 0.631$$

$$\times$$
 { 10. 00 \times (3. 176 2 -2. 185 2) +2 \times (18. 00-10. 00) \times 0. 100 \times (3. 176-2. 185) }

= 33.64 (kN)

 $S \cdot P_{h} = 1.50 \times 27.52 = 41.28 (kN) > R_{h} = 33.64 (kN)$

よって、滑動に対して対策が必要である。

1.5 浮上に対する検討

管の浮上に対する検討は式(7)~(10)により行う。(基準書 p. 417~419)

$$R_v + W - U \ge S \cdot P_v$$
(7)

(地下水位が管底より低い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right) \qquad \cdots \cdots (8)$$

(地下水位が管頂より高い場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$
(9)

(その他の場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
(10)

30.0 (°)

ここで、R: 管側面の主働土圧による摩擦抵抗力 (kN)

P_v: スラスト力の鉛直分力(上向き) 66.43 (kN)

w: 土の単位体積重量 18.00 (kN/m³)

w': 土の水中単位体積重量 10.00 (kN/m³)

L: 管側面の摩擦を受ける長さ

 $2 \times 1.093 = 2.185$ (m)

μ: 管側面と土の摩擦係数 0.50

H.: 地表面から管頂面までの深さ 2.185 (m)

H₂: 地表面から管底面までの深さ 3.176 (m)

H.: 地表面から地下水面までの深さ 0.100 (m)

W: 管底面に加わる全荷重 (kN)

 $W=W_1+W_2$

φ: 土の内部摩擦角

Wi: 管上の埋戻し土による鉛直土圧 (kN)

 $W_1 = W.H_{H}A = 18.0 \times 2.457 \times 0.689 = 30.48 \text{ (kN)}$

W₂: 曲管類の重量および管内水重 (kN)

 $W_2 = 0.95+3.71 = 4.66$ (kN)

H₂: 地表面からの平均深さ 2.457 (m)

A: 管底面積

 $A=(0.640\times\cos 0.0+0.640\times\cos 45.0)\times 0.6308=0.689$ (m²)

U: 管の浮力 (kN)

 $U = \pi / 4 \times 0.6308^2 \times 9.8 \times 1.254 = 3.84$ (kN)

S: 安全率 1.20

$$R_{v} = \frac{1}{2} \times 2.185 \times 0.50 \times \tan^{2} \left(45 - \frac{30.00}{2} \right)$$

$$\times \left\{ 10.00 \times (3.176^{2} - 2.185^{2}) + 2 \times (18.00 - 10.00) \times 0.100 \times (3.176 - 2.185) \right\}$$

$$= 9.96 (kN)$$

$$R_{v} + W - U = 9.96 + (30.48 + 4.66) - 3.84 = 41.26 (kN)$$

$$< S \cdot P_{v} = 1.20 \times 66.43 = 79.72 \quad (kN)$$

よって、浮上に対して対策が必要である。

1.6 スラストブロックの計算

1.6.1 形状寸法図

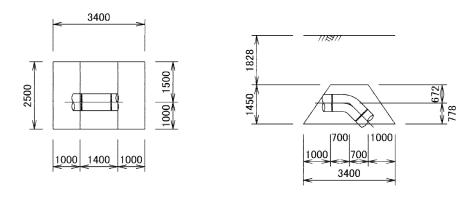


図-1.2 寸法図

1.6.2 スラストカ

水平方向スラストカ $P_h = 0.00 (kN)$ 鉛直方向スラストカ P' = 71.90 (kN) 水平分力 $P_v = 27.52 (kN)$ 鉛直分力 $P_v = 66.43 (kN)$

1.6.3 スラストブロック底面に加わる全荷重

	名 称	計算式	重量 (kN)
1	ブロック自重 1	$3.400 \times 1.450 \times 2.500 \times 23.0$	283. 48
2	ブロック自重 2	$-1/2 \times 1.000 \times 1.450 \times 2.500 \times 23.0$	-41.69
3	ブロック自重 3	$-1/2 \times 1.000 \times 1.450 \times 2.500 \times 23.0$	-41. 69
4	管の控除	$-0.313 \times (0.915 + 0.852 + 0.471) \times 23.0$	-16.09
5	埋戻し土 1	$3.400 \times 0.100 \times 2.500 \times 18.00$	15. 30
6	埋戻し土 2	$3.400 \times 1.728 \times 2.500 \times 10.00$	146.88
7	埋戻し土 3	$1/2 \times 1.000 \times 1.450 \times 2.500 \times 10.00$	18. 13
8	埋戻し土 4	$1/2 \times 1.000 \times 1.450 \times 2.500 \times 10.00$	18. 13
9	管 重	0.756×(0.915+0.852+0.471)	1.69
10	管内水重	$0.3017 \times 9.80 \times (0.915 + 0.852 + 0.471)$	6. 62
		合 計	W _s = 390.75

1.6.4 スラストブロック底面に加わる全荷重(沈下検討用)

	名 称	計算式	重量 (kN)
1	ブロック自重 1	$3.400 \times 1.450 \times 2.500 \times 23.0$	283. 48
2	ブロック自重 2	$-1/2 \times 1.000 \times 1.450 \times 2.500 \times 23.0$	-41.69
3	ブロック自重 3	$-1/2 \times 1.000 \times 1.450 \times 2.500 \times 23.0$	-41. 69
4	管の控除	$-0.313 \times (0.915 + 0.852 + 0.471) \times 23.0$	-16.09
5	埋戻し土 1	$3.400 \times 0.100 \times 2.500 \times 18.00$	15. 30
6	埋戻し土 2	$3.400 \times 1.728 \times 2.500 \times 18.00$	264. 38
7	埋戻し土 3	$1/2 \times 1.000 \times 1.450 \times 2.500 \times 18.00$	32. 63
8	埋戻し土 4	$1/2 \times 1.000 \times 1.450 \times 2.500 \times 18.00$	32. 63
9	管 重	0.756×(0.915+0.852+0.471)	1.69
10	管内水重	$0.3017 \times 9.80 \times (0.915 + 0.852 + 0.471)$	6. 62
		合 計	$W_s = 537.26$

1.6.5 スラストブロックに働く浮力

	名 称	計算式	重量(kN)
1	ブロック 1	$3.400 \times 1.450 \times 2.500 \times 9.8$	120. 79
2	ブロック 2	$-1/2 \times 1.000 \times 1.450 \times 2.500 \times 9.8$	-17. 76
3	ブロック 3	$-1/2 \times 1.000 \times 1.450 \times 2.500 \times 9.8$	-17. 76
	合 計		U = 85.26

1.6.6 鉛直曲がりによるスラストブロックの滑動

管の鉛直曲がりによるスラストブロックの滑動は式(11)~(16)により照査する。(基準書 p. 422~423)

$$R_{h} = R_{h1} + R_{h2} \ge S \cdot P_{h} \qquad \cdots \cdots \cdots (11)$$

$$R_{hI} = \mu \cdot (W_s - U) \qquad \cdots \cdots (12)$$

(地下水位がブロック下面より低い場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{s} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots \cdots (13)$$

(地下水位がブロック上面より高い場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{s} \cdot \left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\} \qquad \cdots \cdots (14)$$

(その他の場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{s} \cdot \{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \}$$
(15)

$$K_{P} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots (16)$$

ここで、R _h :	水平方向抵抗力		(kN)
$R_{\scriptscriptstyle h1}$:	スラストブロック底面の摩擦抵抗力		(kN)
$R_{\scriptscriptstyle{\mathrm{h}2}}$:	スラストブロック背面の受働土圧		(kN)
$P_{\scriptscriptstyle h}$:	スラスト力の水平分力	27.52	(kN)
s :	安全率	1.50	
μ :	スラストブロックと土の摩擦係数	0.500	
W_{s} :	スラストブロック底面に加わる全荷重	390.75	(kN)
U :	スラストブロックに働く浮力	85. 26	(kN)
w :	土の単位体積重量	18.00	(kN/m^3)
w':	土の水中単位体積重量	10.00	(kN/m^3)
$B_{\scriptscriptstyle \mathrm{s}}$:	スラストブロック背面の幅	2.500	(m)
H_1 :	地表面からブロック頂面までの深さ	1.828	(m)
H_2 :	地表面からブロック底面までの深さ	3. 278	(m)
$H_{\scriptscriptstyle w}$:	地表面から地下水面までの深さ	0.100	(m)
K_{P} :	受働土圧係数		

φ: 土の内部摩擦角

30.0 (°)

$$R_{h1} = 0.500 \times (390.75-85.26) = 152.75 (kN)$$

$$K_{P} = \tan^{2}\left(45 + \frac{30.00}{2}\right) = 3.000$$

$$R_{h2} = \frac{1}{2} \times 3.000 \times 2.500$$

$$\times$$
 { 10.00 × (3.278 2 -1.828 2) +2 × (18.00-10.00) × 0.100 × (3.278-1.828) }

= 286.34 (kN)

$$S \cdot P_h = 1.50 \times 27.52 = 41.28 (kN) \le R_h = 152.75 + 286.34 = 439.09 (kN)$$

よって、滑動に対して安全である。

1.6.7 浮上に対する検討

スラストブロックの浮上に対する検討は式(17)~(20)により行う。(基準書 p. 423)

$$R_v + W_s - U \ge S \cdot P_v$$
(17)

(地下水位がブロック下面より低い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right) \qquad \cdots \cdots (18)$$

(地下水位がブロック上面より高い場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$
(19)

(その他の場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\cdot \left\{ w \left(H_{2}^{2} - H_{1}^{2} \right) - \left(w - w' \right) \left(H_{2} - H_{w} \right)^{2} \right\} \cdots \cdots (20$$

ここで、R: ブロック側面の主働土圧による摩擦抵抗力 (kN)

P_v: スラスト力の鉛直分力 66.43 (kN)

S: 安全率 1.20

w: 土の単位体積重量 18.0 (kN/m³)

w: 土の水中単位体積重量 10.0 (kN/m³)

L: ブロック側面の摩擦を受ける長さ

(ブロックの周長) 9.800 (m)

μ: ブロック側面と土の摩擦係数0.50

H: 地表面からブロック頂面までの深さ 1.828 (m)

H₂: 地表面からブロック底面までの深さ 3.278 (m)

H_a: 地表面から地下水面までの深さ 0.100 (m)

φ: 土の内部摩擦角 30.0 (°)

W_s: ブロック底面に加わる全荷重 390.75 (kN)

U: スラストブロックに働く浮力 85.26 (kN)

$$R_v = \frac{1}{2} \times 9.800 \times 0.50 \times tan^2 \left(45 - \frac{30.00}{2} \right)$$

$$\times$$
 { 10.00 \times (3.278 2 -1.828 2) +2 \times (18.00-10.00) \times 0.100 \times (3.278-1.828) }

= 62.36 (kN)

$$R_{v} + W_{s} - U = 62.36 + 390.75 - 85.26 = 367.85 (kN)$$

$$\geq S \cdot P_{v} = 1.20 \times 66.43 = 79.72 \text{ (kN)}$$

よって、浮上に対して安全である。

1.6.8 沈下に対する検討

スラストブロックの沈下に対する検討は式(21)により行う。(基準書 p. 423)

$$\sigma_{rv} \geq S \cdot \sigma_{v} = S \cdot \frac{W_{s}}{A}$$
(21)

ここで、 σ_{x} : スラストブロック底面の地盤の許容支持力度 100.00 (kN/m^2)

S: 安全率 1.00

 σ_v : スラストブロック底面に加わる荷重強度 (kN/m^2)

W_s: スラストブロック底面に加わる全荷重 537.26 (kN)

A: スラストブロックの底面積 8.500 (m^2)

$$\sigma_{\rm v} = \frac{W_{\rm s}}{A} = \frac{537.26}{8.500} = 63.21 \,({\rm kN/m}^2)$$

$$S \cdot \sigma_{v} = 1.00 \times 63.21 = 63.21 (kN/m^{2}) \le \sigma_{rv} = 100.00 (kN/m^{2})$$

よって、沈下に対して安全である。

2 断面 2

2.1 設計条件

準拠指針: 土地改良事業計画設計基準及び運用・解説 設計「パイプライン」

令和3年6月 農林水産省農村振興局整備部設計課

(以後、基準書と略称する)

スラスト形式: 鉛直屈曲部

管 種: 農業用ダクタイル鋳鉄管φ600(DB, K形)

外径 D_s=630.8 (mm), 管厚 T=7.5 (mm)

計算管厚 t=T-2=7.5-2=5.5 (mm)

(基準書 p.313, t+1<10mmm, φ700以下より)

計算内径 D=D₀-2t=630.8-2×5.5=619.8 (mm)

曲がり中心半径: 0.600 (m)

上流側継ぎ手までの管長: 0.640 (m)

下流側継ぎ手までの管長: 0.640 (m)

屈曲角度 水平屈曲角度: -----(°)

鉛直屈曲角度(上流側): 15.0 (°)

鉛直屈曲角度(下流側): 0.0 (°)

合成屈曲角度: 15.0 (°)

地表面から屈曲点までの深さ: 2.300 (m)

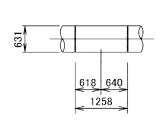
地下水位 G.L. - 1.000 (m)

設計水圧: $H = 0.200 \text{ (MPa)} = 200.00 \text{ (kN/m}^2)$

管内平均流速: 0.800 (m/s)

土の内部摩擦角: 30.0 (°)

管底面地盤の許容支持力度: 100.0 (kN/m²)


単位体積重量 埋戻し土: 18.00 (kN/m³)

地下水: 9.80 (kN/m³)

管内水: 9.80 (kN/m³)

コンクリート: 23.00 (kN/m³)

2.2 設計断面

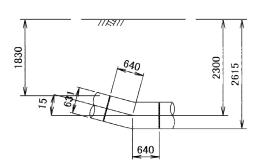


図-2.1 寸法図

2.3 スラストカの算出

スラスト力は式(1)により求める。 (基準書 p. 415)

$$P' = 2 \cdot H \cdot a_{c} \cdot \sin \frac{\theta}{2} + \frac{2a \cdot w_{0} \cdot V^{2}}{g} \cdot \sin \frac{\theta}{2} \qquad \cdots \cdots (1)$$

ここで、 P': スラストカ (kN)

H: 設計水圧 200.0 (kN/m²)

 a_{c} : 設計水圧が作用する範囲の断面積 a_{c} = $\pi/4$ ×0.6308²= 0.3125 (m²)

θ: 屈曲角度 (°)

a : 設計水圧が作用する断面積 $a = \pi/4 \times 0.6198^2 = 0.3017$ (m²)

wo: 管内水の単位体積重量9.80 (kN/m²)V : 管内平均流速0.800 (m/s)g : 重力の加速度9.80 (m/s)

鉛直曲がりによるスラスト力

鉛直屈曲角度 $\theta = 15.0$ (°)

$$P' = 2 \times 200.0 \times 0.3125 \times \sin \frac{15.0}{2}$$

$$+\frac{2\times0.3017\times9.8\times0.800^{2}}{9.8}\times\sin\frac{15.0}{2}=16.37 \text{ (kN)}$$

スラスト力の水平分力

$$P_h = p' \cdot \sin(\theta/2 \pm \beta) = 16.37 \times \sin\left(\frac{15.0}{2} + 0.0\right) = 2.14 \text{ (kN)}$$

ただし、β: 上下流の管路のうち、水平に近いほうの管路が水平面となす角。 なお、上下流の管路が水平面の異なる側にあるとき正、 同じ側にあるときを負とする。

スラスト力の鉛直分力(下向き)

$$P_v = p' \cdot \cos\left(\frac{\theta}{2} \pm \beta\right) = 16.37 \times \cos\left(\frac{15.0}{2} + 0.0\right) = 16.23 \text{ (kN)}$$

2.4 鉛直曲がりに伴う滑動に対する検討

管の鉛直曲がりに伴う滑動は式(2)~(6)により検討する。(基準書 p. 417~419)

$$R_h \ge S \cdot P_h$$
(2)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots \cdots (3)$$

(地下水位が管頂より高い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$
(4)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w \left(H_{2}^{2} - H_{1}^{2} \right) - \left(w - w' \right) \left(H_{2} - H_{w} \right)^{2} \right\}$$
(5)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots \qquad (6)$$

ここで、R₄: 水平方向抵抗力(管背面の受働土圧) (kN)

P.: スラストカの水平分力 2.14 (kN)

S: 安全率 1.50

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 18.00 (kN/m^3)

w': 土の水中単位体積重量 10.00 (kN/m³) B_b: 管背面の幅 B_b=D_c 0.6308 (m)

H.: 地表面から管頂面までの深さ 1.830 (m)

H₂: 地表面から管底面までの深さ 2.615 (m)

H_{*}: 地下水面までの深さ 1.000 (m)

K: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_{p} = \tan^{2} \left(45 + \frac{30.00}{2} \right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 0.631$$

$$\times$$
 { 10.00 \times (2.615 2 -1.830 2)+2 \times (18.00-10.00) \times 1.000 \times (2.615-1.830) }

= 29.21 (kN)

 $S \cdot P_h = 1.50 \times 2.14 = 3.20 (kN) \le R_h = 29.21 (kN)$

よって、滑動に対して安全である。

2. 5 浮上に対する検討

管の浮上に対する検討は式(7)~(10)により行う。(基準書 p. 417~419)

$$R_v + W - U \ge S \cdot P_v$$
(7)

(地下水位が管底より低い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right) \qquad \cdots \cdots (8)$$

(地下水位が管頂より高い場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$
(9)

(その他の場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
(10)

ここで、R_v: 管側面の主働土圧による摩擦抵抗力 (kN)

P_v: スラスト力の鉛直分力(上向き) -16.23 (kN)

w: 土の単位体積重量 18.00 (kN/m^3)

w': 土の水中単位体積重量 10.00 (kN/m³)

L: 管側面の摩擦を受ける長さ $2 \times 1.258 = 2.516$ (m)

μ: 管側面と土の摩擦係数

0.50

H₁:地表面から管頂面までの深さ1.830 (m)H₂:地表面から管底面までの深さ2.615 (m)

H.: 地表面から地下水面までの深さ 1.000 (m)

φ: 土の内部摩擦角 30.0 (°)

W: 管底面に加わる全荷重 (kN)

 $W=W_1+W_2$

Wi: 管上の埋戻し土による鉛直土圧 (kN)

 $W_1 = W.H_mA = 18.0 \times 1.907 \times 0.794 = 27.25$ (kN)

W。: 曲管類の重量および管内水重 (kN) $W_2 = 0.97+3.78 = 4.75$ (kN)

H.: 地表面からの平均深さ

1.907 (m)

A: 管底面積

 $A=(0.640\times\cos 15.0+0.640\times\cos 0.0)\times0.6308=0.794$ (m²)

U: 管の浮力 (kN)

 $U = \pi / 4 \times 0.6308^2 \times 9.8 \times 1.279 = 3.92$ (kN)

S: 安全率 1.20

$$R_{v} = \frac{1}{2} \times 2.516 \times 0.50 \times \tan^{2} \left(45 - \frac{30.00}{2} \right)$$

$$\times \left\{ 10.00 \times (2.615^{2} - 1.830^{2}) + 2 \times (18.00 - 10.00) \times 1.000 \times (2.615 - 1.830) \right\}$$

$$= 9.96 \text{ (kN)}$$

$$R_{v} + \text{W-U} = 9.96 + (27.25 + 4.75) - 3.92 = 38.04 \text{ (kN)}$$

$$\geq \text{S} \cdot \text{P}_{v} = 1.20 \times -16.23 = -19.47 \text{ (kN)}$$

よって、浮上に対して安全である。

2.6 沈下に対する検討

管の沈下に対する検討は式(22),(23)により行う。(基準書 p. 417~420)

$$\sigma_{rv} \geq S \cdot \sigma_{v} = S \cdot \frac{W+P_{v}-R_{v}}{A}$$
(22)

$$R_{v} = 1/2 \cdot w \cdot L \cdot \mu \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2}(45 - \phi/2) \qquad \cdots \cdots (23)$$

ここで、σ_w: 管底面の地盤の許容支持力度 100.00 (kN/m²)

S: 安全率 1.20

σ: 管底面に加わる荷重強度 (kN/m²)

W: 管底面に加わる全荷重 W=W₁+W₂ (kN)

W₁: 管上の埋戻し土による鉛直土圧

 $W_1 = W.H_{B.A} = 18.0 \times 1.907 \times 0.7937 = 27.25$ (kN)

W₂: 曲管類の重量および管内水重 W₂ = 0.97+3.78 = 4.75 (kN)

H』: 地表面からの平均深さ 1.907 (m)

A: 管底面積

P_v: スラスト力の鉛直分力(下向き) 16.23 (kN)

R_v: 管側面の主働土圧による摩擦抵抗力 (kN)

w: 土の単位体積重量 18.00 (kN/m³)

L: 管側面の摩擦を受ける長さ 2×1.258=2.516 (m)

μ: 管側面と土の摩擦係数0.500

H: 地表面から管頂面までの深さ 1.830 (m)

H₂: 地表面から管底面までの深さ 2.615 (m)

φ: 土の内部摩擦角 30.0 (°)

管側面の主働土圧による摩擦抵抗力

$$R_v = \frac{1}{2} \times 18.00 \times 2.516 \times 0.500$$

$$\times$$
 (2. 615 ² -1. 830 ²) \times tan ² $\left(45 - \frac{30.0}{2}\right) = 13.18 (kN)$

管底面に加わる荷重強度

$$\sigma_{v} = \frac{27.25+4.75+16.23-13.18}{0.794} = 44.15 (kN/m2)$$

安全性の照査

$$S \cdot \sigma_{y} = 1.20 \times 44.15 = 52.98 (kN/m^{2}) \le \sigma_{yy} = 100.00 (kN/m^{2})$$

よって、沈下に対して安全である。

3 断面 3

3.1 設計条件

準拠指針: 土地改良事業計画設計基準及び運用・解説 設計「パイプライン」

令和3年6月 農林水産省農村振興局整備部設計課

(以後、基準書と略称する)

スラスト形式: T字管

上流側の管種: 農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

外径 D_c=630.8 (mm) , 管厚 T=7.5 (mm)

計算管厚 t=T-2=7.5-2=5.5 (mm)

(基準書 p. 313, t+1<10mmm, φ700以下より)

計算内径 D=D,-2t=630.8-2×5.5=619.8 (mm)

分岐管の管種: 農業用ダクタイル鋳鉄管 φ 400 (DB, K形)

外径 D_c=425.6 (mm) , 管厚 T=5.5 (mm)

計算管厚 t=T-2=5.5-2=3.5 (mm)

(基準書 p. 313, t+1<10mmm, φ700以下より)

計算内径 D=D₀-2t=425.6-2×3.5=418.6 (mm)

地表面から管中心までの深さ: 1.340 (m)

地下水位 G.L. - 1.000 (m)

設計水圧: H = 0.300 (MPa) = 300.0 (kN/m²)

土の内部摩擦角: 30.0 (°)

単位体積重量 埋戻し土:18.00 (kN/m³)

地下水: 9.80 (kN/m³)

管内水: 9.80 (kN/m³)

コンクリート: 23.00 (kN/m³)

3.2 設計断面

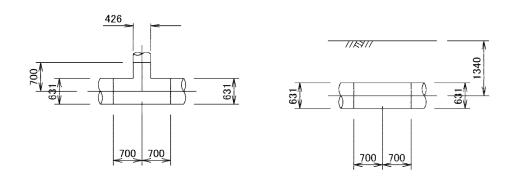


図-3.1 寸法図

3.3 スラストカの算出

T字管のスラスト力は式(24)により求める。

$$P_h = H \cdot a = 300.0 \times 0.14226 = 42.68 (kN)$$
(24)

ここで、P_k: T字管に作用するスラスト力(kN)

H: 設計水圧 300.0 (kN/m²)

a: 設計水圧が作用する断面積 $\pi/4 \times 0.4256^2 = 0.14226$ (m²)

3.4 滑動に対する検討

管の滑動に対する検討は式(25)~(29)により行う。(基準書 p.415~417)

$$R_h \ge S \cdot P$$
(25)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad (26)$$

(地下水位が管頂より高い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$
 (27)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot \left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
 (28)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots (29)$$

ここで、

R: 水平方向抵抗力(管背面の受働土圧) (kN)

P: 分岐部に作用するスラスト力 42.68 (kN)

S: 安全率 1.50

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 18.00 (kN/m³)

w: 土の水中単位体積重量 10.00 (kN/m³)

B₆: 管背面の幅 1.400 (m)

H: 地表面から管頂面までの深さ 1.025 (m)

H₂: 地表面から管底面までの深さ 1.655 (m)

H.: 地下水面までの深さ 1.000 (m)

K: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_p = \tan^2\left(45 + \frac{30.00}{2}\right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 1.400$$

$$\times$$
 { 10.00×(1.655²-1.025²)+2×(18.00-10.00)×1.000×(1.655-1.025) }

= 36.85 (kN)

$$S \cdot P = 1.50 \times 42.68 = 64.02 (kN) > R_h = 36.85 (kN)$$

よって、滑動に対して対策が必要である。

3.5 一体化長さの計算

3.5.1 計算式

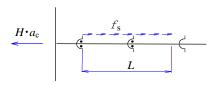


図-3.2 記号説明図

周面摩擦力による合力F_s(kN)は式(30)で求めることができる。

$$F_{s} = L \cdot f_{s} = L \cdot \mu \cdot \Sigma WH \cdot \pi \cdot D_{c} \qquad \cdots \cdots (30)$$

ここで、μ: 摩擦係数 0.50

 Σ wH: 管心より上の土の重量 (kN/m^2)

地下水位より上なら土の単位体積重量18.00kN/m³を 下なら土の水中単位体積重量10.00kN/m³を使用する。

D_c: 管の外径 0.4256 (m)

f_s: 単位m当たりの周面摩擦力 (kN/m)

L: 分岐管の一体化長 (m)

力のつり合いを考え、安全率Sを考慮すると次式が成り立つ。

$$H \cdot a_c \le \frac{F_s}{S} = \frac{1}{S} \cdot L \cdot \mu \cdot \Sigma WH \cdot \pi \cdot D_c$$

H: 設計水圧 300.000 (kN/m²)

a。: 設計水圧が作用する範囲の断面積 (m²)

 $a_c = \pi / 4 \times D_c^2$

S: 安全率 1.50

前式を変形し、Lについて整理すると式(31)のようになる。

$$L \geq \frac{S \cdot H \cdot D_{c}}{4 \mu \cdot \Sigma \text{ wH}} \cdots (31)$$

3.5.2 一体化長さの算出

$$L = \frac{1.50 \times 300.0 \times 0.426}{4 \times 0.50 \times (18.00 \times 1.000 + 10.00 \times 0.340)} = 4.475 \text{ (m)}$$

よって、所要一体化長 L=4.47 (m) また、離脱防止金具の使用個数は片側で1個となる。

4 断面 4

4.1 設計条件

準拠指針: 土地改良事業計画設計基準及び運用・解説 設計「パイプライン」

令和3年6月 農林水産省農村振興局整備部設計課

(以後、基準書と略称する)

スラスト形式: 片落ち部

上流側の管種: 農業用ダクタイル鋳鉄管 φ 600 (DB, K形)

外径 D_c=630.8 (mm) , 管厚 T=7.5 (mm)

計算管厚 t=T-2=7.5-2=5.5 (mm)

(基準書 p.313, t+1<10mmm, φ700以下より)

計算内径 D=D,-2t=630.8-2×5.5=619.8 (mm)

下流側の管種: 農業用ダクタイル鋳鉄管 φ 400 (DB, K形)

外径 D_c=425.6 (mm) , 管厚 T=5.5 (mm)

計算管厚 t=T-2=5.5-2=3.5 (mm)

(基準書 p.313,t+1<10mmm,φ700以下より)

計算內径 D=D_c-2t=425.6-2×3.5=418.6 (mm)

地表面から管中心までの深さ: 2.800 (m)

地下水位 G.L. - 1.000 (m)

設計水圧: H = 0.200 (MPa) = 200.0 (kN/m²)

土の内部摩擦角: 30.0 (°)

単位体積重量 埋戻し土:18.00 (kN/m³)

地下水: 9.80 (kN/m³)

管内水: 9.80 (kN/m³)

コンクリート: 23.00 (kN/m³)

4.2 設計断面

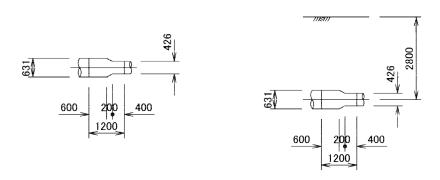


図-4.1 寸法図

4.3 スラストカの算出

片落管のスラスト力は式(32)により求める。

$$P = H \cdot (A_c - A_c) = 200.0 \times (0.313 - 0.142) = 34.05 (kN)$$
(32)

ここで、P: 片落管に作用するスラスト力 (kN)

H: 設計水圧 200.0 (kN/m²)

A.: 上流側の管外径断面積

 $A_c = \pi/4 \times 0.6308^2 = 0.31252 \text{ (m}^2\text{)}$

a。: 下流側の管外径断面積

 $a_c = \pi/4 \times 0.4256^2 = 0.14226 \text{ (m}^2\text{)}$

4.4 滑動に対する検討

管の滑動に対する検討は式(33)~(37)により行う。(基準書 p.415~417)

$$R_h \ge S \cdot P$$
(33)

(地下水位が管底より低い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \qquad \cdots \cdots (34)$$

(地下水位が管頂より高い場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot B_{b} \cdot \left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$
 (35)

(その他の場合)

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{P} \cdot B_{b} \cdot \left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
(36)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots (37)$$

ここで、R₁: 水平方向抵抗力(管背面の受働土圧) (kN)

P: 片落部に作用するスラストカ 34.05 (kN)

S: 安全率 1.50

F: 曲面の受働土圧の補正係数 0.65

w: 土の単位体積重量 18.00 (kN/m^3)

10.00 (kN/m³) 0.631 (m) w': 土の水中単位体積重量

B: 管背面の幅(管外径)

H₁: 地表面から管頂面までの深さ 2.485 (m)

H₂: 地表面から管底面までの深さ 3.115 (m)

H_{*}: 地下水面までの深さ 1.000 (m)

K: 受働土圧係数

φ: 土の内部摩擦角 30.0 (°)

$$K_{p} = \tan^{2}\left(45 + \frac{30.00}{2}\right) = 3.0000$$

$$R_h = 0.65 \times \frac{1}{2} \times 3.000 \times 0.631$$

$$\times$$
 { 10. 00 \times (3. 115 2 -2. 485 2) +2 \times (18. 00-10. 00) \times 1. 000 \times (3. 115-2. 485) }

= 27.93 (kN)

 $S \cdot P = 1.50 \times 34.05 = 51.08 (kN) > R_h = 27.93 (kN)$

よって、滑動に対して対策が必要である。

4.5 スラストブロックの計算

4.5.1 形状寸法図

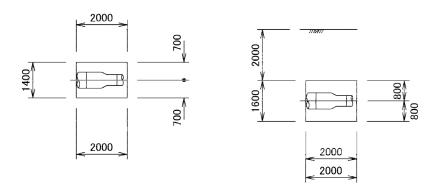


図-4.2 寸法図

4.5.2 スラストカ

水平方向スラストカ P_h = 34.05 (kN)

4.5.3 スラストブロック底面に加わる全荷重

	名 称	計算式	重量 (kN)
1	ブロック自重 1	$2.000 \times 1.600 \times 1.400 \times 23.0$	103. 04
2	ブロック自重 2	$-1/2 \times 0.000 \times 1.600 \times 1.400 \times 23.0$	0.00
3	ブロック自重 3	$-1/2 \times 0.000 \times 1.600 \times 1.400 \times 23.0$	0.00
4	管の控除 1	$-0.313 \times 1.000 \times 23.0$	-7. 19
5	管の控除 2	$-1/2 \times (0.313+0.142) \times 0.200 \times 23.0$	-1.05
6	管の控除 3	$-0.142 \times 0.800 \times 23.0$	-2.62
7	埋戻し土 1	$2.000 \times 1.000 \times 1.400 \times 18.00$	50. 40
8	埋戻し土 2	$2.000 \times 1.000 \times 1.400 \times 10.00$	28.00
9	管 重	0.756×1.000	0.76
10	<i>II</i>	$1/2 \times (0.756+0.325) \times 0.200$	0.11
11	<i>II</i>	0.325×0.800	0. 26
12	管内水重	$0.3017 \times 9.80 \times 1.000$	2. 96
13	<i>11</i>	$1/2 \times (0.3017 + 0.1376) \times 9.80 \times 0.200$	0.43
14	IJ	$0.1376 \times 9.80 \times 0.800$	1.08
		合 計	$W_s = 176.18$

4.5.4 スラストブロック底面に加わる全荷重(沈下検討用)

	名 称	計算式	重量 (kN)
1	ブロック自重 1	$2.000 \times 1.600 \times 1.400 \times 23.0$	103. 04
2	ブロック自重 2	$-1/2 \times 0.000 \times 1.600 \times 1.400 \times 23.0$	0.00
3	ブロック自重 3	$-1/2 \times 0.000 \times 1.600 \times 1.400 \times 23.0$	0.00
4	管の控除 1	$-0.313 \times 1.000 \times 23.0$	-7. 19
5	管の控除 2	$-1/2 \times (0.313+0.142) \times 0.200 \times 23.0$	-1.05
6	管の控除 3	$-0.142 \times 0.800 \times 23.0$	-2.62
7	埋戻し土 1	$2.000 \times 1.000 \times 1.400 \times 18.00$	50. 40
8	埋戻し土 2	2. 000×1. 000×1. 400×18. 00	50. 40
9	管 重	0.756×1.000	0.76
10	11	$1/2 \times (0.756+0.325) \times 0.200$	0.11
11	11	0. 325×0. 800	0. 26
12	管内水重	0. 3017×9. 80×1. 000	2. 96
13	II.	$1/2 \times (0.3017 + 0.1376) \times 9.80 \times 0.200$	0.43
14	II.	0. 1376×9. 80×0. 800	1.08
		合 計	W _s = 198.58

4.5.5 スラストブロックに働く浮力

	名 称	計算式	重量 (kN)
1	ブロック 1	$2.000 \times 1.600 \times 1.400 \times 9.8$	43. 90
2	ブロック 2	$-1/2 \times 0.000 \times 1.600 \times 1.400 \times 9.8$	0.00
3	ブロック 3	$-1/2 \times 0.000 \times 1.600 \times 1.400 \times 9.8$	0.00
	合 計		U = 43.90

4.5.6 スラストブロックの滑動に対する照査

スラストブロックの滑動に対する照査は式(38) \sim (43) により行う。

$$R_{h} = R_{h1} + R_{h2} \ge S \cdot P' \qquad (38)$$

$$R_{h_1} = \mu \cdot (W_s - U) \qquad \cdots \cdots (39)$$

(地下水位が管底より低い場合)

$$R_{h2} = \frac{1}{2} \cdot w \cdot K_{p} \cdot B_{s} \cdot (H_{2}^{2} - H_{1}^{2}) - \frac{\pi}{4} D_{c}^{2} \cdot K_{p} \cdot \Sigma wH \qquad (40)$$

(地下水位が管頂より高い場合)

$$R_{h2} = \frac{1}{2} \cdot K_{P} \cdot B_{s} \cdot \left\{ w' \left(H_{2}^{2} - H_{1}^{2} \right) + 2 \left(w - w' \right) H_{w} \left(H_{2} - H_{1} \right) \right\}$$

$$-\frac{\pi}{4} D_{c}^{2} \cdot K_{p} \cdot \Sigma WH \qquad (41)$$

(その他の場合)

$$R_{h2} = \frac{1}{2} \cdot K_P \cdot B_s \cdot \left\{ w(H_2^2 - H_1^2) - (w-w') (H_2 - H_w)^2 \right\}$$

ここで、R: 水平方向抵抗力

D。: 下流側の管の外径

K_r: 受働土圧係数φ: 土の内部摩擦角

$$-\frac{\pi}{4} D_{c}^{2} \cdot K_{p} \cdot \Sigma WH \qquad (42)$$

(kN)

0.4256 (m)

30.0 (°)

$$K_{p} = \tan^{2}\left(45 + \frac{\phi}{2}\right) \qquad \cdots \qquad (43)$$

, nn	71. 1 72 1. 115/1/172		(1111)
$R_{\scriptscriptstyle h1}$:	スラストブロック底面の摩擦抵抗力		(kN)
$R_{\scriptscriptstyle{h2}}$:	スラストブロック背面の受働土圧		(kN)
P':	スラスト力		(kN)
S:	安全率	1.50	
μ :	スラストブロックと土の摩擦係数	0.500	
$W_{\rm s}$:	スラストブロック底面に加わる全荷重	176. 18	(kN)
U:	スラストブロックに働く浮力	43.90	(kN)
w:	土の単位体積重量	18.00	(kN/m^3)
w':	土の水中単位体積重量	10.00	(kN/m^3)
Σ wH:	管心位置における鉛直応力		(kN/m^2)
B_s :	スラストブロック背面の幅	1.400	(m)
$H_{\scriptscriptstyle 1}$:	地表面からブロック頂面までの深さ	2.000	(m)
H_2 :	地表面からブロック底面までの深さ	3.600	(m)
$H_{\scriptscriptstyle w}$:	地表面から地下水面までの深さ	1.000	(m)
H_{c} :	地表面から管中心までの深さ	2.800	(m)

スラストブロック底面の摩擦抵抗力

$$R_{h1} = 0.500 \times (176.18-43.90) = 66.14 (kN)$$

スラストブロック背面の受働土圧

$$R_{h2} = \frac{1}{2} \times 3.000 \times 1.400$$

$$\times \left\{ 10.00 \times (3.600^{2} - 2.000^{2}) + 2 \times (18.00 - 10.00) \times 1.000 \times (3.600 - 2.000) \right\}$$

$$-\frac{\pi}{4} \cdot 0.426^{2} \times 3.000 \times (18.00 \times 1.000 + 10.00 \times 1.800)$$

$$= 226.56 \text{ (kN)}$$

安全性の照査

$$S \cdot P_h = 1.50 \times 34.05 = 51.08 (kN) \le R_h = 66.14 + 226.56 = 292.69 (kN)$$

よって、滑動に対して安全である。

4.5.7 浮上に対する検討

スラストブロックの浮上に対する検討は式(17)~(20)により行う。(基準書 p. 423)

$$R_v + W_s - U \ge S \cdot P_v$$
(17)

(地下水位がブロック下面より低い場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot w \cdot (H_{2}^{2} - H_{1}^{2}) \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right) \qquad \cdots \cdots (18)$$

(地下水位がブロック上面より高い場合)

$$R_v = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^2 \left(45 - \frac{\phi}{2} \right)$$

$$\cdot \left\{ w' (H_{2}^{2} - H_{1}^{2}) + 2(w - w') H_{w} (H_{2} - H_{1}) \right\} \cdots \cdots (19)$$

(その他の場合)

$$R_{v} = \frac{1}{2} \cdot L \cdot \mu \cdot \tan^{2} \left(45 - \frac{\phi}{2} \right)$$

$$\cdot \left\{ w(H_{2}^{2} - H_{1}^{2}) - (w-w')(H_{2} - H_{w})^{2} \right\}$$
.....(20)

ここで、R_v: ブロック側面の主働土圧による摩擦抵抗力 (kN)

P_v: スラスト力の鉛直分力 0.00 (kN)

S: 安全率 1.20

w: 土の単位体積重量 18.0 (kN/m^3)

w: 土の水中単位体積重量 10.0 (kN/m^3)

L: ブロック側面の摩擦を受ける長さ

(ブロックの周長) 6.800 (m)

μ: ブロック側面と土の摩擦係数 0.50

H.: 地表面からブロック頂面までの深さ 2.000 (m)

H₂: 地表面からブロック底面までの深さ 3.600 (m)

H₂: 地表面から地下水面までの深さ 1.000 (m)

φ: 土の内部摩擦角 30.0 (°)

W_s: ブロック底面に加わる全荷重 176.18 (kN) U: スラストブロックに働く浮力 43.90 (kN)

$$R_v = \frac{1}{2} \times 6.800 \times 0.50 \times \tan^2 \left(45 - \frac{30.00}{2} \right)$$

$$\times$$
 { 10.00 \times (3.600 2 -2.000 2) +2 \times (18.00-10.00) \times 1.000 \times (3.600-2.000) }

= 65.28 (kN)

$$R_{v} + W_{s} - U = 65.28 + 176.18 - 43.90 = 197.56 (kN)$$

$$\geq S \cdot P_{y} = 1.20 \times 0.00 = 0.00 (kN)$$

よって、浮上に対して安全である。

4.5.8 沈下に対する検討

スラストブロックの沈下に対する検討は式(21)により行う。(基準書 p. 423)

$$\sigma_{rv} \geq S \cdot \sigma_{v} = S \cdot \frac{W_{s}}{A}$$
(21)

ここで、 σ_{x} : スラストブロック底面の地盤の許容支持力度 100.00 (kN/m^2)

1.00

σ、: スラストブロック底面に加わる荷重強度 (kN/m^2)

W。: スラストブロック底面に加わる全荷重 198.58 (kN)

A: スラストブロックの底面積 $2.800 \, (m^2)$

$$\sigma_{\rm v} = \frac{W_{\rm s}}{A} = \frac{198.58}{2.800} = 70.92 \, (kN/m^2)$$

$$S \cdot \sigma_{v} = 1.00 \times 70.92 = 70.92 (kN/m^{2}) \le \sigma_{rv} = 100.00 (kN/m^{2})$$

よって、沈下に対して安全である。

5 断面 5

5.1 設計条件

準拠指針: 土地改良事業計画設計基準及び運用・解説 設計「パイプライン」

令和3年6月 農林水産省農村振興局整備部設計課

(以後、基準書と略称する)

スラスト形式: 弁栓部

管 種: 農業用ダクタイル鋳鉄管φ600(DB, K形)

外径 D_c=630.8 (mm), 管厚 T=7.5 (mm)

計算管厚 t=T-2=7.5-2=5.5 (mm)

(基準書 p. 313, t+1<10mmm, φ700以下より)

計算內径 D=D。-2t=630.8-2×5.5=619.8 (mm)

設計水圧: H = 0.200 (MPa) = 200.0 (kN/m²)

管体の軸方向許容圧縮応力度: $\sigma_a = 2.4 (N/mm^2)$

コンクリートの許容押抜きせん断応力度: τ _a= 0.45 (N/mm²)

スティフナーの許容せん断応力度: τ_{ta} = 0.4 (N/mm²)

5.2 スラストカの算出

弁栓部のスラスト力は式(44)により求める。

 $P_h = H \cdot a = 200.0 \times 0.31252 = 62.50 (kN)$ (44)

ここで、P_h: 弁栓部に作用するスラスト力(kN)

H: 設計水圧 200.0 (kN/m²)

a: 設計水圧が作用する断面積 $\pi/4\times0.6308^2=0.31252$ (m²)

5.3 管体応力の検討

弁栓部のスラスト力による管体応力の検討は式(45)により行う。

$$\sigma = \frac{P_h}{A_p} \le \sigma_a (N/mm^2) \qquad (45)$$

ここで、 σ: 管体の軸方向圧縮応力度 (N/mm²)

P_s: 弁栓部に作用するスラスト力 62.50 (kN) = 62503.3 (N)

A.: 管の断面積

 $A_p = \pi/4 \times (0.6308^2 - 0.6198^2) = 0.01080 \text{ (m}^2) = 10804.4 \text{ (mm}^2)$

σ₃: 管体の許容軸方向圧縮応力度 2.4 (N/mm²)

$$\sigma = \frac{62503.3}{10804.4} = 5.78 (N/mm^2) > \sigma_a$$

よって、管体の軸方向圧縮応力度は許容値を満足していない。

5.4 スティフナー固定部の照査

弁栓部のスティフナー固定部の押抜きせん断応力度は式(46)により照査する。

$$\tau_{p} = \frac{P_{h}}{b_{p} \cdot d} \leq \tau_{a} \qquad \cdots (46)$$

ここで、τ_。: 押抜きせん断応力度 (N/mm²)

Ph: 弁栓部に作用するスラスト力62.50 (kN) = 62503.3 (N)

b_s: スティフナー周長 980.0 (mm)

d: せん断力を受けるコンクリート厚 20.0 (mm)

τ_a: コンクリートの許容押抜きせん断応力度 0.5 (N/mm²)

$$\tau_{p} = \frac{62503.3}{980.0 \times 20.0} = 3.19 > \tau_{a}$$

よって、スティフナー固定部の押抜きせん断応力度は許容値を満足していない。

5.5 スティフナー溶接部の検討

弁栓部のスティフナー溶接部におけるせん断応力度は式(47)により照査する。

$$\tau_{t} = \frac{P_{h}}{A_{t}} \leq \tau_{ta} (N/mm^{2}) \qquad \cdots (47)$$

ここで、τ: スティフナーと管体との溶接部におけるせん断応力度 (N/mm²)

P_h: 弁栓部に作用するスラストカ 62.50 (kN) = 62503.3 (N)

A: スティフナーと管体との溶接面積

 $A_t = \pi .D_c \cdot t_s = \pi \times 630.8 \times 10.0 = 19817.2 \text{ (mm}^2)$

t_s: スティフナー厚

10.0 (mm)

 $\tau_{\text{\tiny ta}}$: スティフナーの許容せん断応力度 $0.4~(\text{N/mm}^2)$

$$\tau_{\rm t} = \frac{62503.3}{19817.2} = 3.15 (N/mm^2) > \tau_{\rm ta}$$

よって、スティフナー溶接部におけるせん断応力度は許容値を満足していない。

5.6 一体化長さの計算

安全率Sを考慮した必要一体化長さは式(48)で求める。

$$L \geq \frac{S \cdot P}{\mu \cdot \Sigma \text{ wH} \cdot \pi \cdot D_{c}} \cdots (48)$$

ここで、L: 必要一体化長さ

S: 安全率 1.50

P: 弁栓部に作用するスラスト力 62.5 (kN)

μ: 摩擦係数 0.50

 Σ wH: 管心より上の土の重量 (kN/m^2)

地下水位より上なら土の単位体積重量18.00kN/m³を 下なら土の水中単位体積重量10.00kN/m³を使用する。

D。: 管の外径 0.6308 (m)

$$L = \frac{1.50 \times 62.50}{0.50 \times 10.00 \times 4.000 \times \pi \times 0.631} = 2.366 \text{ (m)}$$

よって、所要一体化長 L=2.37 (m) また、離脱防止金具の使用個数は片側で2個となる。

目 次

1	鉛直屈曲部の検討	2
	1.1 使用管種	
	1.2 スラスト力の検討	
	1.3 スラスト対策工の設計	
2	片落ち部の検討	4
	2.1 スラスト力の検討	
	2.2 スラスト対策工の設計	
3	弁栓部の検討	5
	T字管の検討	
	4.1 使用管種	6
	4.2 スラスト力の検討	6

1 鉛直屈曲部の検討

1.1 使用管種

断面名	使用管種	水平屈曲角	鉛直屈曲角					
例即名 使用官性		θ $_{\scriptscriptstyle \mathrm{h}}$ ($^{\circ}$)	上流側β _" (°)	下流側β _d (°)	合成屈曲角(°)			
断面 1	農業用ダクタイル鋳鉄管 φ 600 (DB, K形)		0.0	45. 0	45. 0			
断面 2	農業用ダクタイル鋳鉄管 φ 600 (DB, K形)		15. 0	0.0	15. 0			

1.2 スラスト力の検討

	滑動の検討(水平曲り) (kN)			滑動の検討(鉛直曲り) (kN)			浮上0	浮上の検討 (kN)				沈下の検討(kN/m²)			
账	スラスト力		水平方向	スラスト力		水平方向	スラスト力		抵抗力	荷重強度		許容	判定		
断面名	Ph		抵抗力	$P_{\scriptscriptstyle h}$		抵抗力	P_v			σ ,		支持力度	刊化		
	S.P _h		$R_{\scriptscriptstyle h}$	S.P _h		$R_{\scriptscriptstyle h}$	S.P _v		R_v +W $-U$	S. σ ,		$\sigma_{\rm rv}$			
断面 1				27. 52			66. 43						NG		
				41.28	>	33. 64	79. 72	>	41. 26				NG		
断面 2				2. 14			-16. 23			44. 15			OK		
图 国 乙				3. 20	≦	29. 21	-19. 47	≦	38. 04	52. 98	≦	100.00	OK		

ここで、S:安全率 滑動に対してS=1.50、浮上に対してS=1.20、沈下に対してS=1.20

1.3 スラスト対策工の設計

		滑動の検討 (水平曲り)(kN)			滑動の検討 (鉛直曲り) (kN)			浮上に対する 検討 (kN)			沈下に対する 検討 (kN/m²)			
断面名	対策工	P _h			P _h		(III.)	P _v	, ,	111.7)	σ,	(11	.,,,	判定
		S.P _h	I	R _h	$S.P_{\scriptscriptstyle h}$		$R_{\scriptscriptstyle h}$	$S.P_v$		R_v +W-U	S. σ _v		$\sigma_{\rm rv}$	
断面 1	スラスト・ブロック				27. 52			66. 43			63. 21			ОК
四田 1					41.28	\leq	439.09	79.72	\leq	367. 85	63. 21	\leq	100.00	UK
断面 2														

ここで、S:安全率 滑動に対してS=1.50、浮上に対してS=1.20、沈下に対してS=1.00

2 片落ち部の検討

2.1 スラストカの検討

			滑動に対する検討 (kN)							
断面名	上流側管種	下流側管種	スラン	スト力		水平方向抵	判定			
			F_x	$S \cdot F_x$		抗力 R _h	刊化			
断面 4	農業用ダクタイル鋳鉄管	農業用ダクタイル鋳鉄管	34. 05	51. 08		27. 93	NG			
	φ 600 (DB, K形)	φ 400 (DB, K形)	34.00	31.08		21.95	NG			

2.2 スラスト対策工の設計

		滑	動に対する検	討	(kN)	沈下の検討(kN/m²)				
断面名	计 签士	スラン	スト力		水平方向抵	荷重	強度		許容支持力	判定
	対策工	F_x	$S \cdot F_x$		抗力 R _h	σ ,	S • σ _v		度 σ _{rv}	
断面 4	スラストブロック	34. 05	51.08	\leq	292. 69	70. 92	70. 92	\leq	100.00	OK

3 弁栓部の検討

断面名	管種	管介	力	コンクリートの 押し抜きせん断応力度			スティフナー溶接部の せん断応力度			判定	所要 一体化	
例即右	· 日 /里	σ (N/mm 2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$ au_{ m ta}$ $({ m N/mm}^2)$	刊化	長さ (m)				
断面 5	農業用ダクタイル鋳鉄管 φ600 (DB, K形)	5. 78	^	2. 36	3. 19	>	0. 45	3. 15	>	0.36	NG	2. 366

4 T字管の検討

4.1 使用管種

断面名	本管の管種	枝管の管種
wi 云 0	農業用ダクタイル鋳鉄管	農業用ダクタイル鋳鉄管
断面 3	φ 600 (DB, K形)	φ 400 (DB, K形)

4.2 スラストカの検討

	消	骨動に対する枠	負討	(kN)		
断面名	スラン	スト力		抵抗力	判定	対策工
	F_x	S • F _x		$R_{\scriptscriptstyle h}$		
断面 3	42.68	64. 02	>	36. 85	NG	枝管側一体化長 4.475 (m)

ここで、S:安全率 滑動に対してS=1.50